

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: A&D IC Applications (23EC0412) **Course & Branch**: B.Tech – ECE

Year &Sem: III-B.Tech & I-Sem Regulation: R23

UNIT –I ICS AND OP-AMPS

PART-A (2 MARKS)

1	a)	Define an Integrated Circuit.	[L1] [CO1]	2M
	b)	List classifications of ICs.		2M
	c)	State two characteristics of an ideal Op-Amp.		2M
	d)	What is the input impedance of an ideal Op-Amp?	[L1] [CO1]	2M
	e)	Define CMRR	[L1] [CO1]	2M

2	a)	Write the advantages of Integrated Circuits.	[L1][CO1]	3M
	b)	Explain about the Levels of Integrations.	[L2][CO1]	7M
3	a)	Represent the symbol of IC 741 op-amp and Mention the 8 pins.	[L1][CO1]	3M
	b)	Draw the Symbol of an Op-Amp and Describe about the Op-Amp.	[L2][CO1]	7M
4	a)	Define Inverting Amplifier.	[L1][CO2]	3M
	b)	With the help of IC 741, illustrate the circuit of an inverting amplifier and	[L3][CO2]	7M
		explain its operation.		
5	a)	Define Non-Inverting Amplifier.	[L1][CO1]	3M
	b)	Draw and Explain about the Non-Inverting Amplifier.	[L3][CO2]	7M
6	a)	Write about the Ideal Operational Amplifier.	[L1][CO1]	4M
	b)	Describe about the Differential gain and Common Mode gain.	[L2][CO1]	6M
7	a)	Explain about the Common Mode Rejection Ratio.	[L2][CO2]	4M
	b)	Show the Relationship between CMRR and Output Voltage of an Op-Amp.	[L3][CO2]	6M
8	a)	Illustrate the internal circuit of an operational amplifier	[L2][CO1]	3M
	b)	Illustrate the block diagram of an operational amplifier and discuss the role of	[L2][CO1]	7M
		its different stages.		
9	a)	Write the DC Characteristics of an Op-Amp.	[L1][CO1]	7M
	b)	Write the AC Characteristics of an Op-Amp.	[L1][CO1]	3M
10	a)	Write the Features of an IC741 Op-Amp.	[L1][CO1]	3M
	b)	For an Op-Amp, CMRR & Differential mode gain is 10 ⁵ .the output voltage	[L3][CO2]	7M
		changes by 20V in 4 micro sec.Calculate (i) Common Mode gain (ii) Slew rate		
11	a)	Determine the output voltage of a differential Amplifier for the input voltages	[L4][CO2]	5M
		of 300µV & 240µV. The Differential gain of the amplifier is 5000. the value of		
		the CMRR is 100.		
	b)	Determine the output voltage of a differential Amplifier for the input voltages	[L4][CO2]	5M
		of $400\mu V$ & $340\mu V$. The Differential gain of the amplifier is 5000.the value of		
		the CMRR is 100.		

Course Code: 23EC0412 R23

<u>UNIT –II</u> <u>APPLICATIONS OF OP-AMP</u>

PART-A (2 MARKS)

1	a)	What is an inverting amplifier?		2M	
	b)	Define a sample and hold circuit.		2M	
	c)	c) Define Virtual Ground Property.		2M	
	d)	Define comparator.	[L1][CO3]	2M	
	e)	What is a Schmitt Trigger?	[L1][CO3]	2M	Ì

2	a)	Explain the working of an inverting amplifier with Op-Amp and derive its	[L3][CO2]	5M
		voltage gain equation.		
	b)	Express and Explain about the Non-Inverting Amplifier.	[L3][CO2]	5M
3	a)	Using an ideal op-amp, derive the expression for Vout of an inverting adder	[L3][CO2]	5M
	<i>u)</i>	and describe how the circuit works.		
	b)	Show the derivation for the non-inverting summing amplifier and explain the	[L3][CO2]	5M
	D)	role of each component.		SIVI
4	9)	Illustrate the inverting subtractor using an op-amp, derive the mathematical	[L3][CO2]	5M
4	a)			SIVI
	1. \	expression for Vout and explain its principle.	LT 311CO31	73. (
	b)	With the help of an op-amp, derive the working equation for a non-inverting	[L3][CO2]	5M
<u> </u>		subtractor circuit and discuss its principle.	FT 435 G 63	
5	a	Explain the working of an instrumentation amplifier using its circuit diagram	[L2][CO2]	5M
	b)	Using the standard three-op-amp configuration, derive the gain formula of an	[L3][CO2]	5M
		instrumentation amplifier.		
6	a)	With the help of a neat diagram, derive and explain the operation of an	[L3][CO2]	5M
		inverting AC amplifier.		
	b)	Derive the mathematical expression for the voltage gain of a non-inverting AC	[L3][CO2]	5M
		amplifier and explain.		
7	a)	Illustrate the circuit of an op-amp based V-I converter and describe how it		5M
		converts an input voltage into a proportional current.		
	b)	With a neat diagram, explain the working principle of an I-V converter and	[L3][CO2]	5M
		derive the output voltage expression.		
8	a)	Obtain the expression for the transfer function of an inverting integrator circuit	[L3][CO2]	5M
		using an op-amp.		
	b)	Illustrate the Expression of Differentiator Circuit.	[L3][CO2]	5M
9	<u>a)</u>	Describe the principle of a sample and hold circuit with the help of a neat	[L2][CO3]	5M
		circuit diagram.		
	b)	How logarithmic and antilogarithmic amplifiers are implemented using op-	[L3][CO3]	5M
		amps? Draw and explain their circuits.		
10	a)	Draw the schematic of an inverting comparator and explain its function with	[L3][CO3]	5M
	,	input-output waveforms.	F - 3F 3	
	b)	Discuss about Schmitt trigger with neat circuit diagram and waveforms.	[L3][CO3]	5M
11	a)	Differentiate between Comparator and Schmitt Trigger.	[L2][CO3]	6M
	b)	Design an Adder Circuit using an Op-Amp to get the output voltage expression	[L6][CO2]	4M
	ן ט			-+1AT
<u></u>		as $V_0 = -(0.1V_1 + V_2 + 10V_3)$		

UNIT –III <u>ACTIVE FILTERS AND OTHER ICS</u> <u>PART-A (2 MARKS)</u>

1	a)	Define filter?	[L1][CO4]	2M
	b)	Define cut-off frequency.	[L1][CO4]	2M
	c)	List applications of 555 timer.	[L1][CO4]	2M
	d)	Define PLL?	[L1][CO4]	2M
	e)	Write the function of a phase detector.	[L1][CO4]	2M

2	۵)	Explain about the Low Pass Filter.	[L2][CO4]	4M			
4	a)		,				
	b)	Design a 1 st Order Low Pass Butterworth Filter using an Op-Amp with	[L3][CO4]	6M			
		Expressions.	57. 635.00.43				
3	a)	Explain about the High Pass Filter.	[L2][CO4]	4M			
	b)	Design a 1st Order High Pass Butterworth Filter using an Op-Amp with	[L3][CO4]	6M			
		Expressions.					
4	a)	Draw and Explain about the Band Pass Filter.	[L2][CO4]	5M			
	b)	Draw and Explain about the Band Rejection Filter.	[L2][CO4]	5M			
5	a)	Design a 2 nd Order Low Pass Butterworth Filter using an Op-Amp with	[L3][CO4]	6M			
		Expressions.					
	b)	Derive and Explain about the All Pass Filter.	[L3][CO4]	4M			
6	a)	Discuss about the Pin Diagram of IC555 Timer.	[L2][CO4]	4M			
	b)	Explain about the Functional description of IC555 Timer.	[L2][CO4]	6M			
7	a)	Explain the working of a monostable multivibrator using IC 555 with a neat	[L2][CO4]	5M			
		circuit diagram and waveforms.					
	b)	Describe the operation of an astable multivibrator using IC 555 timer with the	[L2][CO4]	5M			
		help of a circuit diagram.					
8	a)	Illustrate the circuit of a Schmitt Trigger using IC 555 and explain its principle	[L2][CO4]	5M			
		with transfer characteristics.					
	b)	Draw and explain the block diagram of the monolithic IC 565 (PLL).	[L2][CO4]	5M			
9	a)	With a neat block schematic, explain the functional operation of a Phase	[L2][CO4]	6M			
		Locked Loop (PLL)					
	b)	Define PLL and List the applications of PLL.	[L1][CO4]	4M			
10	a)	Design a Low pass filter at a cutoff frequency of 10KHZ with a passband gain	[L3][CO4]	5M			
		of 2.	L -3L - 3				
	b)	Design a wideband pass filter having f _L =400HZ f _H =2KHZ pass band gain of	[L4][CO4]	5M			
		4.Draw the frequency response of the filter and calculate the Q Value of the					
		filter.					
11	a)	For the All pass filters, the values of R & C are $7.5K\Omega$ and $0.02\mu F$	[L3][CO4]	7M			
		respectively. if the input frequency is 1.5KHZ calculate the Phase shift.	F - 3F 3	· -			
	b)	Design a Notch filter to eliminate 120HZ hum.	[L6][CO4]	3M			
L	~;	besign a rotten inter to eminiate 120112 num. [L0][CO4] 3.					

Course Code: 23EC0412

UNIT –IV VOLTAGE REGULARS AND CONVERTERS PART-A (2 MARKS)

1	a)	What is a voltage regulator?	[L1][CO5]	2M
	b)	Define ADC.	[L1] [CO5]	2M
	c)	Define DAC.	[L1] [CO5]	2M
	d)	Define Switching Regulator?	[L1] [CO5]	2M
	e)	Write the Types of ADC and DAC techniques.	[L1] [CO5]	2M

2	a)	Draw and Explain about the Series Op-Amp Regulator.	[L3][CO5]	5M
	b)	Explain about the Voltage Regulators.	[L2][CO5]	5M
3	a)	Explain about the Switching Regulator.	[L2][CO5]	7M
	b)	Write the Applications of Voltage Regulators.	[L1][CO5]	3M
4	a)	Explain the basic structure of DAC.	[L2][CO5]	5M
	b)	Draw and explain the weighted resistor DAC.	[L3][CO5]	5M
5	a)	Draw and explain the operation of R-2R DAC.	[L3][CO5]	8M
	b)	List the types of ADC.	[L1][CO5]	2M
6	a)	Explain about parallel comparator ADC with neat block diagram.	[L2][CO5]	5M
	b)	Explain about counter type ADC with neat block diagram.	[L2][CO5]	5M
7	a)	The basic step of a 9-bit DAC is 10.3 mV. If "000000000" represents 0V. What	[L3][CO5]	3M
		output is produced if the input is "101101111"?		
	b)	Explain about flash type ADC.	[L2][CO5]	7M
8	a)	Draw and explain successive approximation type ADC with an Example.	[L3][CO5]	5M
	b)	Draw the circuit diagram of Dual Slope ADC and explain its working with neat	[L3][CO5]	5M
		sketch.		
9	a)	What output voltage would be produced by a D/A Converter whose output	[L3][CO5]	6M
		range is o to 10V & whose input binary no. is		
		(i)10 (2 bit DAC) (ii) 0110 (4 bit DAC (iii) 10111100 (8 bit DAC)		
	b)	Calculate the values of LSB and MSB and full scale output for an 8 bit DAC	[L3][CO5]	4M
		for the 0 to 10V range.		
10	a)	An 8-bit DAC has an output voltage range of (0-2.55V) Define its Resolution	[L3][CO5]	4M
		in two ways.		
	b)	The digital input for a 4-bit DAC is 0110.Calucate its final output voltage	[L3][CO5]	6M
		given V _{OFS} =15V.		
11	a)	For a Dual slope ADC V _R =100mv t ₁ =50msec and clock frequency is 12KHZ	[L4][CO5]	5M
		find the digital output for an input voltage of 200mv.		
	b)	An 8-bit has resolution of 20mv/LSB. find its V _{OFS} and V _O if the input is	[L4][CO5]	5M
		$(10000000)_2$		

Course Code: 23EC0412 R23

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: A&D IC Applications (23EC0412) **Course & Branch**: B.Tech – ECE

Year &Sem : III-B.Tech & I-Sem Regulation: R23

UNIT -V DIGITAL ICS

PART-A (2 MARKS)

1	a)	Define CMOS.	[L1][CO6]	2M
	b)	Define PMOS	[L1][CO6]	2M
	c)	Define NMOS	[L1][CO6]	2M
	d)	Define Encoder	[L1][CO6]	2M
	e)	Define Flipflop	[L1][CO6]	2M

2	a)	Explain about the CMOS Logic Levels.	[L2][CO6]	5M
	b)	Draw and Explain about the PMOS Transistors.	[L3][CO6]	5M
3	a)	Draw and Explain about the NMOS Transistors.	[L3][CO6]	5M
	b)	Draw and Explain about the Basic CMOS Inverter.	[L3][CO6]	5M
4	a)	Design the NAND gate using CMOS Logic	[L3][CO6]	5M
	b)	Design the NOR gate Using CMOS Logic.	[L3][CO6]	5M
5	a)	Design and Explain about the CMOS AND-OR-INVERT	[L1][CO6]	5M
	b)	Design and Explain about the CMOS OR-AND-INVERT	[L1][CO6]	5M
6	a)	Write the Applications of TTL-74XX & CMOS 40XX Series ICs	[L2][CO6]	5M
	b)	Write the Specifications of TTL-74XX & CMOS 40XX Series ICs	[L2][CO6]	5M
7	a)	Define Decoder and Explain any one of the Decoder with truth table.		5M
	b)	Define Encoder and Explain about any one of the Encoder with truth table	[L2][CO6]	5M
8	a)	Draw and Explain about the Priority Encoder.	[L2][CO6]	5M
	b)	Define Multiplexer and Explain any one of the Multiplexer with truth table.	[L1][CO6]	5M
9	a)	Define De-Multiplexer and Explain any one of the De-Multiplexer with truth	[L3][CO6]	5M
		table.		
	b)	Define Flip-Flop and Write the types of Flip-Flops.	[L3][CO6]	5M
10	a)	Draw and Explain about the JK Flip-Flop.	[L2][CO6]	5M
	b)	Draw and Explain about the SR Flip-Flop.	[L2][CO6]	5M
11	a)	Explain about the Counters.	[L2][CO6]	5M
	b)	Explain about the Shift Registers,	[L2][CO6]	5M

UNIT –I ICS AND OP-AMPS

1.	What is an Integrated C	Circuit (IC)			[
	A) power cable	B) A small chip with many electronic components	C) A software tool	D) A motor	
2.	What does IC classifica				Г
		B) Voltage rating only	C) Physical size	D) No. of components & usage	L
3.	What is the most used (Op-Amp IC			[
	A) IC 555	B) IC 741	C) IC 7805	D) IC 4001	
4.	What is the function of	an operational amplifier			[
	A) Convert AC to DC	B) Generate power	C) Store data	D) Amplify electrical signals	
5.	What is the ideal input	impedance of an Op-Amp			[
	A) 0 ohms	B) 100 ohms	C) 10 ohms	D) Infinite	
6.		t impedance of an Op-An	np		[
	A) 1000 ohms	B) 1 ohm	C) Zero	D) Infinite	
7.	What is the typical open	n-loop gain of an ideal Op	o-Amp		[
	A) 1	B) 10	C) Infinite	D) 100	
8.	How many terminals do				
	A) 6	B)10	C)4	D)8	
9.	What is the purpose of	the inverting input			[
	A) Reverses the phase	B) Adds power	C) Filters signals	D) Multiplies signals	
	of input signal				
10.	What is the power supp				[
	A) ± 1 V	B) 0V to 5V	C) $\pm 5V$ to $\pm 18V$	D) 50V to 100V	
11.	Which pin is used for o				[
	A) Pin 2	B) Pin 1 and Pin 5	C) Pin 3	D) Pin 4	
12.	What is circuit complex				[
	A) No. of components	B) Shape of circuit	C) Color of IC	D) Material used	
	in the IC				_
13.	What is the use of the o		G) G	<i>D</i>	
	A) Power the IC	B) Adjust input	C) Start oscillation	D) Give the amplified	
				signal	_
14.	What is the role of feed		~ ~		L
	A) Increases noise	B) Decreases speed	C) Controls gain and stability	D) Heats the circuit	
15.	What is a differential in	±	G) I	5) 7	L
	A) Difference between	B) Sum of two inputs	C) Input with same	D) Input of power	
1.	two input voltages		voltage	supply	r
16.	What is CMRR in Op-A			5) •	L
	A) Gain at output	B) Power used	C) Ability to reject	D) Input current	
4.5	TTT : 1 C.1 : NOT	D G 1	common signals		-
17.		a DC characteristic of Op	•	D) I (CC)	L
	A) Frequency	B) Input bias current	C) Offset voltage	D) Input offset current	
10	response				r
18.	Which one is an AC ch		C) O/D : 1	D) (1)	L
10	A) Offset voltage	B) Input impedance	C) O/P impedance	D) Slew rate	r
19.	What does "slew rate"		C) D	D) D! 1:	L
	A) Input voltage	B) Offset current	C) Rate of change of	D) Bias voltage	
20	TT 1 1 1 2	CC . 11	output voltage		r
20.	What is the use of an of		a, a,	D) D	L
	A) Supply power	B) Increase gain	C) Start oscillation	D) Remove unwanted output when input is	

21.	Which IC package is us	ed for 741 Op-Amp			ſ]
	A) BGA	B) QFP	C) TO-92	D) DIP (Dual Inline Package)	L	ı
22.	What is the function of	the non-inverting input		_	[]
	A) Reverse phase	B) Keep same phase of input signal	C) Ground the signal	D) Act as output		
23.	On-Amns are generally	used with which feedback	k		Г]
23.	A) No feedback	B) Negative feedback	C) Positive feedback	D) Mixed feedback	L	J
24.	What is the unit of gain	,	C) I OSHIVE ICCUOUCK	D) Wined recubiek	[]
21.	A) Amps	B) Volts	C) Decibels (dB)	D) Ohms	L	J
25.	Which pin in IC 741 is		C) Decidens (dD)	D) Omno	Γ]
20.	A) Pin 1	B) Pin 4	C) Pin 7	D) Pin 8	L	J
26.	What does a high input	,	-,	_ / 0	ſ]
	A) Op-Amp takes very little current from input	B) Takes more power	C) Voltage becomes high	D) Output is blocked	L	
27.	How is IC chip size gen	erally measured	8		[]
	A) In kilograms	B) In millimeters or micrometers	C) In liters	D) In volts	L	ı
28.	Which factor increases				[]
	A) Size of IC	B) Shape of IC	C) Number of transistors and resistors	D) Color of IC	·	,
29.	Which property is true f	for ideal Op-Amps			[]
	A) Low gain	B) High output impedance	C) Infinite input impedance	D) Low bandwidth		
30.	What happens if both O	p-Amp inputs are equal	•		[]
	A) Output is zero	B) Output is max	C) Output is noisy	D) Output is negative		
31.	What is PSRR in Op-A	mps			[]
	A) Output noise	B) Phase shift	C) Peak signal ratio	D) Power Supply Rejection Ratio		
32.	Which component is no	t inside Op-Amp internal	circuit		[]
	A) Transistors	B) Resistors	C) Capacitors	D) Inductors		
33.		Op-Amp internal circuit			[]
	A)1	B)2	C)5	D)3		
34.	What does the gain of a				[]
	A) Size of the chip	B) Feedback and circuit design	C) Color of IC	D) Shape of package		
35.	What does output voltage	ge swing mean			[]
	A) Oscillation time	B) Pin number	C) Circuit error	D) Max. voltage Op- Amp can output		
36.	Why is IC 741 called ge	eneral purpose Op-Amp			[]
	A) It is used in many common applications	B) It is very costly	C) It is	D) It has no feedback		
37.	Which pin in IC 741 is	used for -Vcc	programmable		г]
37.	A) Pin 7	B) Pin 4	C) Pin 2	D) Pin 1	[J
38.	Which configuration gives	,	C) I III 2	D) I III I	Г]
50.	A) Unity gain	B) Non-inverting	C) Open-loop	D) Inverting	L	J
39.	Which signal does an O	_	c, open loop	2) 111101111116	[]
	A) Power signal	B) Difference between two inputs	C) Supply voltage	D) Clock pulse	L	J
40.	Why is IC packaging in	-			[]
	A) It protects the chip and allows connection	B) It makes IC colorful	C) It changes voltage	D) It controls temperature	Ĺ	ı

UNIT –II APPLICATIONS OF OP-AMP

1.	In an inverting amplifier,	the input is applied to the	ne terminal.		[]
	A) Non-inverting	B) Inverting	C) Output	D) Offset		
2.	In a non-inverting amplif	ier, the output is in pl	hase with input.		[]
		B) Lagging	_	D) Shifted	-	_
3.	A differential amplifier a		*	,	Γ]
		=	_	D) Average	-	•
4.	An Op-Amp adder combi		*	_ / · - · · · · · · · · ·	Γ]
••		B) AC	C) Constant	D) Input voltage	L	J
5.	An Op-Amp subtractor g	/	,	B) input voltage	Г]
<i>J</i> .			C) Average	D) None	L	J
6.	. Instrumentation amplific	•	,	D) None	г]
0.	A) Power output			D) Tamparatura	L	J
7	-		C) Noise	D) Temperature	г	1
7.	An AC amplifier can bloom	_	CIDE	D) Madulatad	L]
0	<i>'</i>	B)DC	C)RF	D) Modulated	r	,
8.	A V to I converter conver	•	a) a	D) E	L]
		B) Resistance	C) Current	D) Frequency	_	_
9.	A current-to-voltage conv				L]
	A) Digital clocks		C) Motor controllers	D) Transmitters		
10.	1 1 0 0				[]
	A) Time integral	,	,	D) Pulse		
11.	. A log amplifier uses the	behavior of dic	odes		[]
	A) Linear	B) Constant	C) Logarithmic	D) None		
12.	Differentiator gives the	of input.			[]
	A) Integral	B) Average	C) Frequency	D) Rate of change		
13.	Sample and hold circuits	are used in system	ns.	_	[]
	-	B) Motors	C) ADC	D) AM Radios	_	
14.			,	,	Γ]
	0 1 1	-	C) Frequency	D) Noise removal	-	•
15.	Op-Amp multipliers mult	, .	-) · · · · · · · · · · · · · · · · ·	_,	Γ]
10.		B) Output	C) Clock	D) Analog	L	J
16	Comparators compare tw		,	D) I maiog	Г]
10.	A) Sine wave			D) Random	L	J
17	A Schmitt trigger provide		C) Diliary	B) Random	г	1
1/.		B) Noise-free and	C) Linear	D) None	L	J
	*	stable	C) Linear	D) None		
10					г	1
18.	1	-	C) Constant waltons	D) Continuous sausas	[]
	A) Stable DC	B) Pulse once	C) Constant voltage	D) Continuous square		
10	36		. •	wave	-	,
19.	Monostable multivibrator	_			L]
		B) Single pulse	C) Oscillating	D) Inverted	_	
20.	Bistable multivibrator has				L]
	,	B)3	C)2	D)4		
21.	Triangle wave generator	gives a output sha	ape.		[]
	A) Square	B) Linear ramp up and	C) Sawtooth	D) Sinusoidal		
		down				
22.	Square wave generators g	give output.			[]
		B) Sine	C) Modulated	D) High and low		
				levels		
23.	Wein Bridge oscillator us	ses Op-Amps to generate	ewaves.		[]
	_	B) Sine	C) Triangular	D) Sawtooth		-
	-		-			

24.		enerate waves with			[]
	A) DC	B) Pulse	C) Sine	D) No		
25.		uration gives phase inver			Ĺ]
	A) Non-inverting	B) Inverting	C) Voltage follower	D) None		
26.	Which amplifier has gain				[]
	A) Inverting	B) Differential	C) Subtractor	D) Voltage follower (buffer)		
27.	Which Op-Amp circuit	combines signals		,	[]
	A) Integrator	B) Comparator	C) adder	D) Schmitt trigger	L	,
28.	, 6	oves a DC level from the	· ·	, 86	[]
	A) Adder	B) AC amplifier	C) Subtractor	D) Log amplifier	-	,
29.	,	store input voltage briefl	*	,	1]
	A) Differentiator	B) Integrator	C) Sample and hold	D) Comparator	L	J
30.	What is the function of	,	c) zumpro una nora	2) comparator	[]
		B) Add signals	C) Multiply inputs	D) Compare voltages and give digital O/P	L	ı
31.	What does a Schmitt tri	gger help eliminate		0 0	[]
	A) DC	B) AC	C) Gain	D) Noise in signals	-	-
32.	What is the output of a	differentiator	,	,	[1
	A) Constant	B) Rate of change	C) Sine wave	D) Amplified signal	-	-
33.	What is the output of an	,	,	, 1	ſ	1
	A) Derivative	B) Inverted input	C) Cumulative sum over time	D) No output	L	•
34.	Op-Amp-based oscillate	ors work without any			Γ	1
	A) Voltage	B) Gain	C) Input	D) Output	L	1
35.	, 0	is generated by combining	' -	-) · · ···· · · · ·	Γ]
00.	A) Differentiator only	•	C) Subtractor	D) Integrator and	L	J
	11) 2 111010111111101	2) comparator	<i>5) 2001001</i>	square wave generator		
36.	Which circuit is best for	r analog multiplication		4 8	Γ	1
	A) Adder	B) Multiplier using	C) Differentiator	D) Voltage follower	L	J
	11) 110001	Op-Amp	c) Birreremator	b) voltage follower		
37.	Which waveform is syn	nmetrical and used in test	ing		Γ	1
٥,,	A) Sine	B) Square	C) Sawtooth	D) DC	L	J
38.	· ·	portant in ADCs using O	,	D) DC	ſ	1
50.	A) Oscillator	B) Sample and hold	C) Schmitt trigger	D) Adder	L	J
39.	,	common signals and am		D) Hadel	ſ	1
37.	A) Non-inverting	B) Adder	C) Differential	D) Comparator	L	1
	12, 11011 1111, 01111115	_,	amplifier	2, comparator		
40	Why is IC packaging in	nnortant	ampinioi		ſ]
.0	A) Protects the chip &	•	C) It changes voltage	D) It controls	L	1
	allows connection	colorful	e, it changes tollage	temperature		

UNIT –III ACTIVE FILTERS AND OTHER ICS

1.		esigned forrespon	se.		[]
	A) Sharp	B) Flat	C) Uneven	D) Rippled		
2.	A first-order low-pass fi	ilter allows frequen	cies to pass		[]
	A) High	B) Mid	C) Low	D) None		
3.	A second-order high-pas	ss filter attenuates fr	requencies more.		[]
	A) Low	B) High	C) All	D) None		
4.	*	arange of freque	,	,	ſ]
	A) Very low	B) Specific	C) All	D) None	-	_
5.	•	ks frequencies.	,	,	[]
	A) Low	B) High	C) Certain	D) All		-
6.	An all-pass filter passes	all frequencies with	change.	,	[]
	A) Gain	B) Phase		D) Resistance	-	_
7.	*	f a filter is the point where		*	ſ]
	A) 0	B) 3	C)6	D)10		-
8.	The IC 555 is commonly	,	,	,	[]
		B) Filter	C) Amplifier	D) Timer	_	_
9.	In the IC 555 timer, pin	•	, 1	,	ſ]
-	<u> </u>	B) Reset	C) Output	D) Control	L	_
10.	Pin 2 of IC 555 is the	*	c) curput	2) 2011101	Γ]
	A) Discharge	B) Trigger	C) Output	D) Vcc	L	
11.	,	5 continuously produces	′ 1	2) (60	[]
	A) Sine	B) Square	C) Triangular	D) DC	L	J
12.		e IC 555 gives outp	,	D) BC	Г]
1 2.	A) Continuous	B) One	C) Two	D) Infinite	L	J
13.		de the timing interval in a	,	D) IIIIIIIC	[]
13.	A) Transistors	_	C) Diodes	D) Resistors and	L	J
	71) Transistors	D) madetors	C) Diodes	capacitors		
14.	The IC 555 works with	voltages from volt	c	capacitors	[]
17.	A) 1–3V	B) 3–6V	C) 4.5–15V	D) 20–25V	L	J
15.	*	the discharge pin in IC 55		D) 20-23 V	[1
13.	A) Output	~ ·		D) Controls voltage	L	J
	A) Output	capacitor	C) Inverts signar	D) Controls voltage		
16	A Sahmitt trigger using	Op-Amp introduces			г	1
10.		B) Filtering	C) Delay	D) Gain	L]
17	A) Hysteresis	PLL) is used to lock onto		D) Gaill	г	1
17.	± '	·	•	D) Voltage	[]
10	A) Power	B) Shape	C) Frequency	D) Voltage	г	7
18.	The heart of a PLL is the		C) Compositor	D) Dhaga datastan G	[J
	A) Filter	B) Timer	C) Comparator	D) Phase detector &		
10	The IC 566 is a			VCO	г	7
19.	The IC 566 is a	D) VCO	C) Countain	D) Amalifian	[]
	A) Timer	B) VCO	C) Counter	D) Amplifier		
20.	What is the use of the lo	yy naga filton in a DI I			г	1
20.	What is the use of the lo	-	C) Acts on on	D) Domovos high	[]
	A) Increases voltage	B) Stores data	C) Acts as an	D) Removes high-		
71	The output fraguency of	Fo VCO depends on	amplifier	frequency components	г	7
21.	The output frequency of	-	C) Control voltage	D) Clock signal	[]
22	A) Input voltage	B) Input current	C) Control voltage	D) Clock signal	г	7
22.	A monolithic PLL is a P		C) Single IC	D) Transformer	[]
	A) Transistor	B) Capacitor	C) Single IC	D) Transformer		

23. The function of a phase detector in PLL is to compare					[]
	A) Voltages	B) Input and feedback frequencies	C) Currents	D) Powers		
24.	A basic PLL has how n	nany blocks			[]
	A) 2	B) 4	C) 3	D) 5		
25.	In filters, the roll-off ra	te of a second-order filter	is dB/decade.		[]
	A) 10	B) 40	C) 20	D) 60		
26.	The Butterworth filter p	providesin the passl	oand.		[]
	A) Peaks	B) Flat response	C) Ripple	D) No gain		
27.	An astable 555 timer ha	as no state.			[]
	A) Stable	B) High	C) Low	D) Output		
28.	In monostable mode, or	utput returns to low after-			[]
	A) Time period	B) Triggering	C) Reset	D) Delay		
29.	The duty cycle of a 555	astable circuit depends o	n		[]
	A) Load	B) Vcc	C) R1, R2, and C	D) Pin 1		
30.	A filter that passes high	and low frequencies but	blocks mid-range is call	led	[]
	A) Low-pass	B) Band-stop (Notch)	C) Band-pass	D) All-pass		
31.	What does a control vo	ltage do in a VCO			[]
	A) Sets amplitude	B) Starts oscillator	C) Changes output	D) Controls duty cycle		
			frequency			
32.	PLLs are commonly use	ed insystems.			[]
	A) Power supply	B) Audio systems	C) Communication	D) Motors		
33.	The frequency of an IC	566 VCO is set by			[]
	A) Inductance	B) Resistor and capacitor	C) Input power	D) Output load		
34.	In a 555 timer, reset pir	-			[]
	A) Disable the timer	B) Set frequency	C) Start VCO	D) Connect to Vcc	-	-
35.	A band-pass filter is for	- · ·	,	,	1	1
	A) Two low-pass	B) Low-pass and	C) High-pass filters	D) Schmitt triggers		
	filters	high-pass filters	only			
36.	The unit for phase in a l		•		[]
	A) Hz	B) Degrees or radians	C) Amps	D) Volts		
37.	Which IC is used for ge	enerating accurate timing	pulses		[]
	A) 723	B) 741	C) 555	D) 4017		
38.	The VCO in a PLL con	trols the of outpu	ut signal.		[]
	A) Power	B) Amplitude	C) Frequency	D) Duty		
39.	Filters are classified by	their characteristic	S.		[]
	A) Frequency	B) Voltage	C) Current	D) Size		
40.	The main use of filters	in electronics is to			[]
	A) Reduce size	B) Change voltage	C) Store energy	D) Pass or block specific frequencies		

UNIT –IV VOLTAGE REGULARS AND CONVERTERS

1.	What does a voltage reg	gulator do			[]
	A) Increases current	B) Keeps output voltage constant	C) Controls resistance	D) Amplifies signal		
2.	A series Op-Amp regul	ator uses a eleme	nt in series.		[]
3.	A) Capacitor IC 723 is avolta	B) Resistor	C) Pass transistor	D) LED	[]
	A) Fixed	B) General purpose	C) Switching	D) AC	L r	
4.	Which IC provides post A) 7912	B) 723	C) 555	D) 7812	L]
5.	What is the output of a A) 3.3V	7805 regulator B) 5V	C) 9V	D) 12V	[]
6.	Switching regulators us A) Resistors	seto control voltage B) Diodes only	C) High-speed switching elements	D) Capacitors only	[]
7.	A buck converterA) Increases	the voltage. B) Decreases	C) Inverts	D) Blocks	[]
8.	A boost converter		,	,	[]
9.	A) Reduces In a switching regulator	B) Maintains r, efficiency is usually about	C) Increases	D) Discharges	[]
10.	A) 30% A DAC converts	B) 50%	C) 100%	D) 70–90%	[]
11.	A)A/D	B)D/A DAC, each bit has a	C) AC to DC	D) Voltage to current	[]
	A) Same	B) Infinite	C) Zero	D) Different weighted		
	A) Variable	s only values of res B) Three	C) None	D) Two	[]
	A) Positive	AC, output polarity is B) Alternating	C) Floating	D) Negative	[]
	What is the purpose of A) Store signals	B) Convert A/D	C) Amplify current	D) Reduce voltage	[]
	Flash ADC is also calle A) SAR	B) Dual slope	C) Counter	D) Parallel comparator	[]
	A counter-type ADC us A) Decrementing	B) Binary	C) Analog	D) Loop	[]
17.	Successive Approximat A) Timer	B) Ramp generator	C) Binary search method	D) Frequency counter	[]
18.	A dual-slope ADC is	<u> </u>		D) Unctable	[]
19.	A) Fast Resolution of a DAC re		C) Inaccurate	D) Unstable	[]
	A) Power rating	B) Smallest output change	C) Clock speed	D) Voltage input		
20.	Linearity of a DAC mea A) Output is random	ans B) Follows sine wave	C) Output changes uniformly	D) No signal	[]
21.		series regulator controls t	he output voltage	D) G .	[]
22.		B) Pass transistor mproves efficiency by		D) Capacitor	[]
	A) Heating up	B) Rapidly turning on and off	C) Reducing frequency	D) Increasing resistance		

23.		for both voltage re	_		[]
	A) AC and DC	B) Positive and	C) High and low	D) Steady and		
		negative		variable		
24.		uses a reference voltage	_		[]
	A) Linear	B) Thermoelectric	C) Diode-only	D) Switching		
25.		a linear regulator is the di			[]
	, <u>*</u>	B) Ground and output	C) Input and output	D) Vcc and ground		
26.	Which regulator can be	1 1 0			[]
	A) Buck	B) Linear	C) Boost	D) Series		
27.		on of a buck-boost conver			[]
	A) Lower output only	B) Raise output only	C) Block DC	D) Either increase or decrease output voltage		
28.	Which part of a switching	ng regulator stores energy	I	, 011.11.50	[]
	A) Capacitor	B) Inductor	C) Transistor	D) Zener diode	L	,
29.		rnal reference voltage of		_,	ſ]
	A) 1.2V	B) 3.3V	C) 7.15V	D) 9V	L	,
30.		data to a/an signa		2) > .	Γ]
	A) Binary	B) Clock	C) Analog	D) Pulse	L	,
31.		oinary-weighted resistors	0)8	_ /	Γ	1
01.		B) R-2R DAC	C) Flash DAC	D) PWM	L	J
	DAC	2) 11 211 2110	C) 1 14611 211C	2) 2 1112		
32.		tage of an R-2R ladder D	AC		[]
	A) Variable resistors	B) Uses only two	C) Needs high power	D) No linearity		
	,	resistor values	c) =	_ / = =====;		
33.	The resolution of an n-b				[]
	A) 1/n	B) 1/(2 ⁿ)	C) 2 ⁿ	D) n ²	L	,
34.	What defines the speed		,	,	[]
	A) Power rating		C) Conversion time	D) Clock voltage		
35.	Which ADC type is the	,	,	, 8	[]
	A) Dual slope	B) SAR	C) Counter	D) Flash	-	•
36.	, 1	ation ADC has sp	· ·	,	Γ	1
	A) Low, low	B) Medium, good	C) High, low	D) Low, high	-	•
37.		sed for measureme	, 0	, , ,	[1
	A) High-speed	B) AC	C) Precision	D) Wireless	-	•
38.	, 0 1	e reference voltage is app		*	[1
	A) Integration	B) De-integration	C) Sampling	D) Delay	-	•
39.		means output always		, ,	Γ	1
	A) Stays same	B) Decreases	C) Resets	D) Increases or stays	-	•
	, J	,	,	constant		
40.	Linearity error in a DAG	C is the difference betwee	en actual and out		[1
	A) Voltage	B) Ideal	C) Digital	D) Clocked	L	
	, ,		, ,	,		

UNIT –V DIGITAL ICS

1.	CMOS logic gates cons	-	C) Madium	D) No	[]
2.	A) High CMOS stands for	B) Low	C) Medium	D) No	[]
۷.		B) Coded MOS	C) Complementary	D) Central MOS	L	J
	Operation	,	Metal Oxide Semiconductor	,		
3.	A basic CMOS inverter	uses transistors.	Semiconductor		[]
	A) One	B) Three	C) Four	D) Two (PMOS + NMOS)	L	-
4.	NAND and NOR are ca	ılled gates.		111100)	[]
	A) Secondary	B) Universal	C) Logicless	D) Passive		-
5.	CMOS 4011 is a	*	, 0	,	ſ]
	A) NAND	B) NOR	C) AND	D) OR	_	_
6.	TTL logic families start	t with number			[]
	A) 4000	B) 74XX	C) 555	D) 723	_	_
7.	Code converters are use	,	,	,	[]
		B) Clock to pulse	C) Binary to BCD or Gray code	D) None	-	•
8.	A decoder does the fund	ction of input.	•		[]
	A) Multiplying	B) Storing	C) Inverting	D) Activating one	-	-
				output based on binary input		
9.	An encoder converts m	ultiple inputs into a c	ode.		[]
	A) Sound	B) Binary	C) Pulse	D) Digital		
10.	A priority encoder give	s output based on			[]
	A) Sum	B) Highest input	C) Lowest signal	D) Last input		
		priority	_	_		
11.	A multiplexer selects	input(s) for output.			[]
	A) Multiple	B) Random	C)) One	D) All		
12.	A demultiplexer routes	input to output(s).			[]
	A) One	B)) Multiple	C) Zero	D) Single		
13.	7483 IC is used as				[]
	A) 4-bit Binary Adder	B) Decoder	C) Flip-flop	D) Comparator		
14.	A magnitude comparato	or compares			[]
	A) Voltages	B) Binary numbers	C) Clocks	D) Frequencies		
15.	Flip-Flops are device	ces.			[]
	A) Combinational	B) Analog	C) Sequential	D) Digital only		
16.	A D Flip-Flop stores	bit.			[]
	A)2	B)1	C)4	D)8		
17.	A JK Flip-Flop has how	w many stable states?			[]
	A)3	B)4	C)2	D) None		
18.	T Flip-Flop toggles who	en			[]
	A) Input is low	B) Input is high and	C) No clock	D) Reset is active	L	
	, 1	clock pulses	,	,		
19.	A synchronous counter	-			Γ]
	A) Random input	B) Input voltage	C) Clock signal	D) Noise	L	
20.	A decade counter count	, 1	,	, -	ſ]
- *	A)8	B)11	C)16	D)10	L	

1.	Mr. U.SRINIVASULU	U		Assistant Professor/	ECE	
Prepa	red by:					
-	A) Timing	B) Bistable	C) Single-shot	D) Cascade		
40.	Flip-flops are also calle			D) G 1	[]
39.	Which IC is a 4-bit syn A) 7400	chronous binary counter? B) 74151	° C) 74161	D) 7474	L]
38.	A) Previous output	s counter, all flip-flops are B) Same clock	C) Output of first FF	D) Ground	[]
20	A) Control voltage	B) Supply power	C) Synchronize data movement	D) Add delay	r	7
37.		a clock in sequential circ		D) A 44 4-1	[]
36.	A)4	a 4-bit Johnson counter h B)8	C)16	D) $2n = 8$	[]
	A Johnson counter is a A) Binary	B) Ripple	C) Shift register- based	D) Full-adder	[]
25	A) Zero	B) Accumulated per flip-flop	C) Constant	D) Negative	r	-
34.		in asynchronous counters		2) voimbon counter	[]
33.	Which counter can cou	,	C) Up-down counter	D) Johnson counter	[]
32.	In ripple counters, flip-A) Same	flops are triggered by the B) Previous stage	output. C) Clock directly	D) Power supply	[]
	A) Synchronous	known as a counter. B) Ring	C) Asynchronous	D) Bidirectional	[]
	,	B) Resistor values	C) Parallel buses	D) Present input and past states	[-
30.	A) D	B) SR	C) T	D) Gated	r r	
29.	,	B) Race-around in most counters?	C) Underclock	D) Parity	ſ	
28.	The master-slave JK fli	p-flop avoids probler	ns.	,	[
27.	Which gate is used in S A) XOR	R flip-flop design B) NOR or NAND	C) NOT	D) OR	[]
26.	A flip-flop is a basic sto A) Linear	orage element in logic B) Analog	c C) Sequential	D) Parallel	[
25.	74LS194 is a shift a A) 8-bit	B) 4-bit bidirectional	C) 2-bit unidirectional	D) Tri-state	L	
	A) Serial to parallel	B) Analog to digital	C) Clock to signal	D) Data to clock	r	-
24.	A) Up-down Shift registers can be us	B) Shift register-based sed to convert to		D) Random	[]
23.	A ring counter is a type	of counter.	·	,	[]
22.	74LS194 is a shift a A) 4-bit bidirectional	=	C) 4-bit bidirectional	D) Decoder	[]
21.	A) Randomly	B) In parallel	C) Bit by bit	D) In analog	[

R23

Assistant Professor / ECE

Course Code: 23EC0412

2. Mr. SV.RAJESH KUMAR